Influence of a 2-fluoro substituent on diastereoselectivity in the 1,3-dipolar cycloadditions of nitrones

Masataka Ihara,* Yuko Tanaka, Nobuyuki Takahashi, Yuji Tokunaga and Keiichiro Fukumoto

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980-77, Japan

Abstract

It is clear that the role of 1,2-asymmetric induction on the 1,3-dipolar cycloaddition of nitrones is influenced by the presence of a fluorine atom at the C-2 position. 2-Fluoro nitrones, synthesized by three different methods, have been subjected to the intermolecular 1,3-dipolar cycloaddition with ethyl vinyl ether. The stereostructures of isoxazolidines formed were determined by their conversion into 2,7-dioxa-6-azabicyclo[3.2.1]octanes. The diastereoselectivity of 2-fluoro nitrones was the reverse of that of the corresponding 2-hydro nitrones. This fact supports that the conformation with relief from the dipole repulsion between the fluorine atom and the oxygen atom of the nitrone is a preferred one for 2-fluoro nitrones, while the corresponding 2 -hydro nitrones adopt the conformation with the least 1,3 -allylic strain.

Introduction

Because of their important physical and biological properties, the regio- and stereo-controlled synthesis of organofluorine compounds is of importance. ${ }^{1}$ We observed earlier that the intramolecular 1,3-dipolar cycloaddition of the nitrone $\mathbf{1}$ produced, in a highly stereoselective manner, the bicyclic isoxazolidine 2, convertible into 1β-methylcarbapenem $3,{ }^{2}$ while the corresponding fluorinated nitrone $\mathbf{4}$ gave a 1:2.8 mixture of two stereoisomers 5 and $\mathbf{6}^{3}$ (Scheme 1). The results could be explained as follows: the desired stereoisomer $\mathbf{2}$ was diastereoselectively formed via conformation $\mathbf{8}$, this having the least 1,3allylic strain. However, conformation 8 was not favourable for the fluorinated compound mainly because of the dipole repulsion between the fluorine atom and the oxygen atom of the nitrone; therefore, the alternative conformation 7 became the preferred one. In view of this, we were interested in studying the intermolecular 1,3-dipolar cycloaddition of nitrones possessing a fluorine atom at the $\mathrm{C}-2$ position in order to confirm the above explanation. It was further considered that the cycloadducts would be useful as precursors of pharmacologically interesting compounds, such as fluoroamino acids.

On the basis of the above considerations, the reaction of 3 -oxygenated fluoro nitrones 9 with ethyl vinyl ether has been investigated, because the stereochemistry of the stereogenic centre, newly introduced by the cycloaddition, could be determined by the conversion of the cycloadduct $\mathbf{1 0}$ into 2,7-dioxa-6-azabicyclo[3.2.1]octanes $\mathbf{1 1}$ and $\mathbf{1 2}$ (Scheme 2). We herein describe our results which support our earlier assumption.

Results and discussion

Preparation of nitrones

2-Fluoropropan-1-ol derivatives having a protected oxygen functionality at the $\mathrm{C}-3$ position were synthesized by three different methods. The 2-methyl and 2-ethyl derivatives 17 and 19 were prepared as optically active compounds from the phenylmenthyl esters $\mathbf{1 3}$ and $\mathbf{1 5}$, which were diastereoselectively synthesized starting with diethyl fluoromalonate. ${ }^{4}$ The hydroxy group of $\mathbf{1 3}$ (an epimeric mixture in a $c a .5: 1$ ratio), was protected with a tert-butyldimethylsilyl (TBDMS) group. The reduction of the phenylmenthyl ester group of 14 was performed using lithium borohydride to give 17 (85%), $[a]_{D}^{24}+0.90$ (MeOH). Other hydride reagents were ineffective for the reduction. The optical purity was established as 83% ee by conversion of $\mathbf{1 7}$ into $\mathbf{1 8}$ reaction with (S) - α-methoxy- α-(trifluoromethyl)-

Scheme 1
phenylacetic acid (MTPA) ${ }^{5}$ in the presence of DCC and DMAP ${ }^{6}$ in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}^{7}$. The corresponding ethyl compound 19, $[a]_{\mathrm{D}}^{24}+1.39\left(\mathrm{CHCl}_{3}\right)$, was similarly prepared, and its optical purity was determined as 90% ee (Scheme 3).

The 2-phenyl derivative 25 was synthesized through the

11
12
Scheme 2

Scheme 3
fluorination of (\pm)-methyl mandelate 21. Thus, the treatment of 21 with diethylaminosulfur trifluoride (DAST) ${ }^{8}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ provided $22(92 \%)$. The aldol reaction of 22 with formaldehyde in the presence of LDA afforded 23 (58%) which was converted into $\mathbf{2 5}$ by the protection of the hydroxy group, followed by reduction with lithium borohydride (Scheme 4).

Scheme 4
It was assumed that a large difference between the bulkiness of two groups neighbouring the fluorine atom would be required to obtain an interpretable result. For this purpose, the introduction of alkyl groups at the C-3 position was tried as shown in Scheme 5. Regioselective ring opening of the epoxide 27, which was prepared from 26, was carried out using tetrafluorosilane in the presence of diisopropylethylamine and water. ${ }^{9}$ Oxidation of the resulting alcohol 28, obtained in 69% yield, with the Dess-Martin periodinane (DMPI), ${ }^{10}$ followed by reaction with methyllithium, provided the secondary alcohols 29 as a 1.7:1 mixture of two diastereoisomers in 75% overall yield. After benzoylation of $\mathbf{2 9}$, the benzyl group of the resulting compound $\mathbf{3 0}$ was removed by hydrogenolysis utilizing 10% $\mathrm{Pd}-\mathrm{C}$ in the presence of acetic acid. The relative configuration

Scheme 5
of the major isomer 31, separated by the HPLC technique, was determined by further transformation (vide infra).

The preceeding alcohol 28 was further transformed into the ester $\mathbf{3 2}$ in 93% overall yield in three steps (Scheme 6). Treat-

33

$$
\begin{aligned}
& \underset{\mathrm{AcOH}}{\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}} \longleftarrow \mathrm{C}^{-} \mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph} \\
& \longrightarrow 36 \mathrm{R}=\mathrm{H}
\end{aligned}
$$

Scheme 6
ment of $\mathbf{3 2}$ with methyllithium provided the tertiary alcohol 33 (87%). Deblocking of the benzyl group of 33 gave the diol 34, whilst protection of the hydroxy group of 33 with a TBDMS group, followed by the removal of the benzyl group of the resulting compound 35 , produced the alcohol 36 .

In order to compare the degree of stereoselectivity, the corresponding alcohols $\mathbf{3 8}, \mathbf{4 2}$ and $\mathbf{4 3}$ carrying a hydrogen atom instead of the fluorine atom were newly prepared starting with 37 and 39 as shown in Scheme 7.

Oxidation of the alcohol 17 with DMPI ${ }^{10}$ in the presence of pyridine, followed by reaction with N-benzylhydroxylamine at

Table 1 1,3-Dipolar cycloaddition of nitrones having a fluorine atom at the C-2 position with ethyl vinyl ether

Entry	Nitrone	R^{1}	R^{2}	R^{3}	R^{4}	Isoxazolidines	Yield	Ratio of \mathbf{A} to \mathbf{B}
1	$\mathbf{4 4}$	Me	TBDMS	H	H	$\mathbf{5 7}$	86	$1.1: 1$
2	$\mathbf{4 5}$	Et	TBDMS	H	H	$\mathbf{5 8}$	85	$1.1: 1$
3	$\mathbf{4 6}$	Ph	TBDMS	H	H	$\mathbf{5 9}$	97	$1: 1.1$
4	$\mathbf{4 7}$	Me	PhCO	H	Me	$\mathbf{6 0}$	100	$2.5: 1$
5	$\mathbf{4 8}$	Me	H	Me	Me	$\mathbf{6 1}$	83	$2.0: 1$
6	$\mathbf{4 9}$	Me	TBDMS	Me	Me	$\mathbf{6 2}$	84	$4.1: 1$

Scheme 7
room temperature, gave the nitrone $44,[a]_{24}^{\mathrm{D}}-41.4\left(\mathrm{CHCl}_{3}\right)$, in 53% overall yield. The ethyl compound 45 , $[\alpha]_{24}^{\mathrm{D}}-46.9\left(\mathrm{CHCl}_{3}\right)$, was similarly prepared in 63% overall yield from 19 . The geometry of the nitrones was assigned as Z-form on the basis of the observation of NOE (2.3%) between the olefinic hydrogen at 6.70 ppm and the benzylic hydrogens at 4.88 ppm of 45 . 2Fluoro nitrones $\mathbf{4 6 - 4 9}$ and the 2-hydro nitrones 52-56 were synthesized by the same procedure as already described (Scheme 8). The olefinic hydrogens of all the nitrones resonate in the range 6.59-6.98 ppm.

1,3-Dipolar cycloaddition of nitrones

The cycloaddition of nitrones with ethyl vinyl ether was examined under various conditions. It has been found that the reaction rate of 2 -fluoro nitrones is a little faster than that of the corresponding 2-hydro nitrones. In order to complete the reaction within a reasonable reaction time, a temperature above $80^{\circ} \mathrm{C}$ was required. The cycloaddition of the hindered nitrones 48, 49, $\mathbf{5 5}$ and 56 was carried out for 16 h at $105^{\circ} \mathrm{C}$. Results of cycloaddition performed at $80^{\circ} \mathrm{C}$ or $105^{\circ} \mathrm{C}$ are shown in Tables 1 and 2 (Schemes 9 and 10). Four stereoisomers were obtained by each reaction, but no formation of regioisomers was observed. ${ }^{11}$

No appropriate catalyst for the cyclization was found. Although cycloadducts were produced by the treatment of nitrones with ethyl vinyl ether at 10000 atm and room temperature, no improvement of yield and diastereoselectivity was observed.

Isoxazolidines produced were converted into 2,7-dioxa-6azabicyclo[3.2.1]octanes in order to establish their stereochemistry. Treatment of a mixture of 57A and 57B (Table 1, entry 1) with toluene- p-sulfonic acid in hot benzene provided $\mathbf{6 8 A}(40 \%)$ and $\mathbf{6 8 B}(37 \%)$. The structure of the major isomer

68A was determined by the $\operatorname{NOE}(1.8 \%)$ between the methyl group ($1.16 \mathrm{ppm}, \mathrm{d}, J 21.4 \mathrm{~Hz}$) at the C-4 position and the axial hydrogen ($2.62 \mathrm{ppm}, \mathrm{dd}, J 11.9,2.8 \mathrm{~Hz}$) at the C-8 position. On the other hand, the corresponding hydro-isoxazolidines 63A and 63B (Table 2, entry 1) gave a separable 1:1.6 mixture of 73A and 73B (81%). The NOE (3.4%) was observed between the methyl group ($1.05 \mathrm{ppm}, \mathrm{d}, J 7.3 \mathrm{~Hz}$) and the axial hydrogen $(2.30 \mathrm{ppm}$, br d, $J 11.6 \mathrm{~Hz}$) of the minor product 73 A .

A 1.1:1 mixture of 69A and 69B was obtained from a mixture of the isoxazolidines 58A and 58B (Table 1, entry 2) carrying a fluorine atom and ethyl group, while a $1.2: 1$ mixture of 74A and 74B resulted from the corresponding non-fluorinated compounds 64A and 64B (Table 2, entry 2). Furthermore, a

Table 2 1,3-Dipolar cycloaddition of nitrones having a hydrogen atom at the C-2 position with ethyl vinyl ether

Entry	Nitrone	R^{1}	R^{2}	R^{3}	R^{4}	Isoxazolidines	Yield	Ratio of \mathbf{A} to \mathbf{B}
1	$\mathbf{5 2}$	Me	TBDMS	H	H	$\mathbf{6 3}$	84	$1: 1.6$
2	$\mathbf{5 3}$	Et	TBDMS	H	H	$\mathbf{6 4}$	88	$1.2: 1$
3	$\mathbf{5 4}$	Ph	TBDMS	H	H	$\mathbf{6 5}$	95	$1: 4.6$
4	$\mathbf{5 5}$	Me	H	Me	Me	$\mathbf{6 6}$	66	$1: 1.1$
5	$\mathbf{5 6}$	Me	TBDMS	Me	Me	$\mathbf{6 7}$	$11(53)^{a}$	$1: 2.5$

${ }^{a}$ Yield based on the recovered starting material.

$44 \sim 49$

68A $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}$
69A $\mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}$
70A $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}$
71A $\mathrm{R}^{1}=\mathrm{R}^{4}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{H}$
72A $R^{1}=R^{3}=R^{4}=\mathrm{Me}$

68B $R^{1}=M e, R^{3}=R^{4}=H$
69B $R^{1}=E t, R^{3}=R^{4}=H$
70B $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}$
71B $R^{1}=R^{4}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{H}$
72B $R^{1}=R^{3}=R^{4}=\mathrm{Me}$

Scheme 9

73A $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}$
74A $\mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}$
75A $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}$
76A $\mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{Me}$

73B $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}$
74B $\mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}$
75B $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}$
76B $\mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{Me}$

Scheme 10
1:1.1 mixture of 70A and 70B and a $1: 4.6$ mixture of 75A and 75B were produced in the case of the phenyl compounds (Table 1 , entry 3 and Table 2, entry 3). Structures of the bridged prod-
ucts were determined by NOE experiments and comparison with spectral data.

The compounds which belong to a series of \mathbf{A} are produced by the approach of the ethyl vinyl ether from the less hindered side of the conformation 77 of nitrones or from the hindered side of conformation 78 (Scheme 11). On the other hand, the

Scheme 11
attacks of the dipolarophile from the other sides of the two conformations lead to a series of B. Although the observed results support that conformation 77 with the relief from the dipole repulsion is the preferred form for the fluoro nitrones, while the non-fluorinated ones take the conformation 78 with the least 1,3 -allylic strain, the differences of the ratios of the two stereoisomers are rather small.

The isoxazolidines 60 (Table 1, entry 4), obtained in 100% yield from 47 possessing a tertiary carbon at the $\mathrm{C}-3$ position, was transformed, in two steps, into 71A and 71B in the ratio of $2.5: 1$. The stereostructure of the major product 71A was established by the NOE experiments; 2.3% NOE between the equatorial hydrogen (4.29 ppm , dq, $J 19.8,6.8 \mathrm{~Hz}$) at the C-3 and the methyl group ($1.29 \mathrm{ppm}, \mathrm{d}, J 22.3 \mathrm{~Hz}$) at the C-4 position and 2.1% NOE between the axial hydrogen (2.04 ppm , dd , $J 12.3,1.7 \mathrm{~Hz}$) at the C-8 and the methyl group at the C-4 position.

The 1,3-dipolar cycloaddition of the tertiary alcohol $\mathbf{4 8}$ gave a 2.0:1 mixture of isoxazolidines $\mathbf{6 1 A}$ and $\mathbf{6 1 B}$, both of which were separated by column chromatography (Table 1, entry 5). The structure of $\mathbf{7 2 A}$, derived from $\mathbf{6 1 A}$, was determined by the NOE (1.4%) between the hydrogen (2.02 ppm , dd, $J 11.9,2.1$

Hz) at the C-8 and the methyl group ($1.37 \mathrm{ppm}, \mathrm{d}, J 23.1 \mathrm{~Hz}$) at the C-4 position. The corresponding hydro compounds 66A and 66B were obtained in the ratio of 1:1.1 (Table 2, entry 4). The stereostructure of $\mathbf{7 6 B}$, derived from the major product 66B, was established by the NOE (1.2%) between the axial hydrogen $(1.89 \mathrm{ppm}, \mathrm{d}, J 11.3 \mathrm{~Hz})$ at the $\mathrm{C}-8$ and the axial hydrogen ($1.75 \mathrm{ppm}, \mathrm{dq}, J 7.1,1.9 \mathrm{~Hz}$) at the $\mathrm{C}-4$ position.

A comparably good degree of diastereoselectivity was observed on the cycloaddition of the TBDMS ether 49 (Table 1, entry 6), a $4.1: 1$ mixture of 62A and 62B being obtained in 84% yield. The corresponding hydroisoxazolidines 67A and 67B were produced in a ratio of $1: 2.5$ (Table 2, entry 5). The stereostructures of the products were determined by correlation with the previously described compounds. These findings support the above assumption. Conformations 77 and 78 were favourable ones for fluoro- and hydro-nitrones, respectively, although the fluorine and the hydrogen atoms would not be entirely on the plane of the nitrones.

Experimental

All reactions were carried out under a positive atmosphere of dry N_{2}, unless otherwise indicated. Solvents were distilled prior to use: THF, $\mathrm{Et}_{2} \mathrm{O}$, hexane and benzene were freshly distilled from Na and benzophenone; $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ and DMF were distilled from CaH_{2} and stored over $4 \AA$ molecular sieves; pyridine and triethylamine were distilled from KOH and stored over KOH . All extracts were dried over MgSO_{4}, and the solvent was removed by rotary evaporation under reduced pressure. All new compounds are homogenous on HPLC and TLC, and their purities were further verified by 300 or $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra. J Values are recorded in Hz .
(-)-(1R,3R,4S)-8-Phenyl-p-menthan-3-yl (2'S)-3'-(tert-butyl-dimethylsiloxy)-2'-fluoro-2'-methylpropionate 14
A mixture of $\mathbf{1 3}^{4}(134 \mathrm{mg}, 0.397 \mathrm{mmol}), \mathrm{TBDMSCl}(89.9 \mathrm{mg}$, 0.596 mmol) and imidazole ($54.1 \mathrm{mg}, 0.795 \mathrm{mmol}$) in dry DMF $\left(2.7 \mathrm{~cm}^{3}\right)$ was stirred for 12 h at room temperature. After addition of water, the mixture was extracted with AcOEt. The extract was washed with water and brine, dried and evaporated. The residue was subjected to column chromatography on silica gel with AcOEt -hexane $(1: 20, \mathrm{v} / \mathrm{v})$ as the eluent to give 14 $(165 \mathrm{mg}, 92 \%)$ as an oil, $[a]_{\mathrm{D}}^{23}-15.3\left(c 2.93, \mathrm{CHCl}_{3}\right) ; v_{\max }($ neat $) /$ $\mathrm{cm}^{-1} 1730$ and $1250 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.06\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right)$, $0.85(3 \mathrm{H}, \mathrm{d}, J 6.2,1-\mathrm{Me}), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 0.94-1.08(3 \mathrm{H}, \mathrm{m})$, $1.25(3 \mathrm{H}, \mathrm{s}, 8-\mathrm{Me}), 1.26$ ($3 \mathrm{H}, \mathrm{d}, J 21.2$, CFMe), 1.36 ($3 \mathrm{H}, \mathrm{s}, 8-$ $\mathrm{Me}), 1.40-1.60(3 \mathrm{H}, \mathrm{m}), 1.94-2.10(2 \mathrm{H}, \mathrm{m}), 3.60-3.93(2 \mathrm{H}, \mathrm{m})$, $4.83-5.20(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and $7.10-7.36(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z(\mathrm{EI})$ $331.2070\left(\mathrm{M}^{+}-\mathrm{CMe}_{2} \mathrm{Ph} . \mathrm{C}_{17} \mathrm{H}_{32} \mathrm{FO}_{3} \mathrm{Si}\right.$ requires 331.2105).
(-)-(1R,3R,4S)-8-Phenyl-p-menthan-3-yl (2'S)-2'-(tert-butyl-dimethylsiloxymethyl)-2'-fluorobutyrate 16
An oil (95%), $[a]_{D}^{23}-15.3\left(c 11.0, \mathrm{CHCl}_{3}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 1760$, 1730 and 1260; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-0.05-0.13(6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{SiMe}_{2}\right), 0.65-1.12(15 \mathrm{H}, \mathrm{m}), 1.16-1.80(12 \mathrm{H}, \mathrm{m}), 1.95-2.12(4 \mathrm{H}$, $\mathrm{m}), 3.28-3.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CFCH}_{2}\right), 4.79-5.00(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and $7.06-7.34(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z$ (EI) $325.2240\left(\mathrm{M}^{+}-\mathrm{CMe}_{2} \mathrm{Ph}\right.$. $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{FO}_{4}$ Si requires 345.2261).

Methyl 3-(tert-butyldimethlysiloxy)-2-fluoro-2-phenylpropionate 24

An oil (99%), $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1745$ and $1260 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.065(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.073(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.88(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Bu}^{t}\right), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.94(1 \mathrm{H}$, dd, $J 16.1$ and $11.4,3-\mathrm{H})$, $4.34(1 \mathrm{H}, \mathrm{dd}, J 31.5$ and $11.4,3 \mathrm{H})$ and $7.31-7.61(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$; $m / z(E I) 313.1587\left(\mathrm{M}^{+}+\mathrm{H} . \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{FO}_{3} \mathrm{Si}\right.$ requires 313.1635).
(+)-(2R)-3-(tert-Butyldimethylsiloxy)-2-fluoro-2-methylpropan-1-ol 17
To a suspension of $\mathrm{LiBH}_{4}(191 \mathrm{mg}, 8.77 \mathrm{mmol})$ in dry THF (1.0 cm^{3}) at $0{ }^{\circ} \mathrm{C}$ was added a solution of $\mathbf{1 4}(197.3 \mathrm{mg}, 0.437 \mathrm{~mol})$
in dry THF ($3.0 \mathrm{~cm}^{3}$), and the mixture was stirred for 18 h at $45^{\circ} \mathrm{C}$. After the addition of saturated aq. NaHCO_{3}, the mixture was extracted with AcOEt. The extract was washed with brine, dried and evaporated to give a residue, which was purified by column chromatography on silica gel. Elution with AcOEthexane ($1: 20$, v/v) yielded $17(83.2 \mathrm{mg}, 85 \%)$ as an oil, $[\alpha]_{D}^{24}$ $+0.90(c 10.1, \mathrm{MeOH}) ; v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3400$ and $1260 ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.08\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right), 1.31$ ($3 \mathrm{H}, \mathrm{d}, J 21.9, \mathrm{CFMe}$), $2.07(1 \mathrm{H}, \mathrm{br}$ t, $J 6.6, \mathrm{OH}$) and $3.60-3.83$ $(4 \mathrm{H}, \mathrm{m}) ; m / z(\mathrm{EI}) 1625.0720\left(\mathrm{M}^{+}-\mathrm{Bu}^{t} . \mathrm{C}_{6} \mathrm{H}_{14} \mathrm{FO}_{2} \mathrm{Si}\right.$ requires 165.0747).
(+)-(2R)-2-(tert-Butyldimethylsiloxymethyl)-2-fluorobutan-1-ol 19
An oil $(66 \%),[a]_{\mathrm{D}}^{24}+1.39\left(c 0.59, \mathrm{CHCl}_{3}\right) ; v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3420$ and $1260 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.06\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.85-0.96$ $(12 \mathrm{H}, \mathrm{m}), 1.56-1.78(2 \mathrm{H}, \mathrm{m}), 2.09(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 6.4, \mathrm{OH})$ and 3.61-3.82 (4H, m); m/z (EI) 237.1687 (M ${ }^{+}+\mathrm{H} . \mathrm{C}_{11} \mathrm{H}_{26} \mathrm{FO}_{2} \mathrm{Si}$ requires 237.1686).

3-(tert-Butyldimethylsiloxy)-2-fluoro-2-phenylpropan-1-ol 25

An oil (90%), $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3420$ and $1260 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.05(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right)$, $2.28(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 7.0, \mathrm{OH}), 3.88-4.25(4 \mathrm{H}, \mathrm{m})$ and $7.28-7.46$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $m / z(\mathrm{EI}) 207.0872\left(\mathrm{M}^{+}-\mathrm{H}-\mathrm{F}-\mathrm{Bu}^{t} . \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{Si}\right.$ requires 207.0841).

(2R)-3-(tert-Butyldimethylsiloxy)-2-fluoro-2-methylpropyl (S)-(3,3,3-trifluoro-2-methoxy-2-phenyl)propionate 18

To a stirred solution of $17(6.9 \mathrm{mg}, 31 \mu \mathrm{~mol}),(S)-(-)-\alpha-$ methoxy- α-(trifluoromethyl)phenylacetic acid ($8.7 \mathrm{mg}, 37 \mu \mathrm{~mol}$) and DMAP ($3.8 \mathrm{mg}, 31 \mu \mathrm{~mol}$) in dry $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\left(0.5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added DCC ($9.6 \mathrm{mg}, 46 \mu \mathrm{~mol}$). After being stirred for 14 h at room temperature, the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and then filtered through Celite. Evaporation of the solvent gave 18 as an oil, $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 1760$ and 1250; $\delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.04\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 1.32(3 \mathrm{H}$, d, J 21.6, CFMe), $3.42-3.76(5 \mathrm{H}, \mathrm{m}), 4.30-4.54(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{OCO}$) and $7.35-7.60(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z$ (EI) 381.1170 $\left(\mathrm{M}^{+}-\mathrm{Bu}^{t} . \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~F}_{4} \mathrm{O}_{4} \mathrm{Si}\right.$ requires 381.1145).

(2R)-2-(tert-Butyldimethylsiloxymethyl)-2-fluorobutyl (S)-(3,3,3-trifluoro-2-methoxy-2-phenyl)propionate 20

An oil, $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1760$ and 1250; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $0.00(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.03(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 0.94$ ($\left.3 \mathrm{H}, \mathrm{t}, J 7.7, \mathrm{CH}_{2} \mathrm{Me}\right), 1.45-1.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CFCH}_{2} \mathrm{Me}\right), 3.50-$ $3.75(5 \mathrm{H}, \mathrm{m}), 4.26-4.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OCO}\right)$ and $7.34-7.61(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}) ; m / z(\mathrm{EI}) 395.1265\left(\mathrm{M}^{+}-\mathrm{Bu}^{t} . \mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~F}_{4} \mathrm{O}_{4} \mathrm{Si}\right.$ requires 395.1302).

Methyl 2-fluorophenylacetate 22

To a stirred solution of methyl mandelate ($810 \mathrm{mg}, 4.87 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ was slowly added DAST (1.57 $\mathrm{g}, 9.74 \mathrm{mmol}$), and the mixture was stirred for 19 h at room temperature. After dilution with AcOEt, the mixture was washed with saturated aq. NaHCO_{3}, water and brine, dried and evaporated to give a residue. This was chromatographed on silica gel with $\mathrm{Et}_{2} \mathrm{O}$-hexane ($1: 5, \mathrm{v} / \mathrm{v}$) as the eluent to afford 22 ($752 \mathrm{mg}, 92 \%$) as an oil (Found: C, 64.15; H, 5.4. $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{2}$ requires $\mathrm{C}, 64.3 ; \mathrm{H}, 5.4 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1760$ and 1220 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.79(1 \mathrm{H}, \mathrm{d}, J 47.6$, $\mathrm{CFH})$ and 7.34-7.51 (5H, m, Ph); m/z (EI) $168\left(\mathrm{M}^{+}\right)$.

Methyl 2-fluoro-3-hydroxy-2-phenylpropionate 23

To a stirred LDA solution, prepared from diisopropylamine $(309 \mathrm{mg}, 3.05 \mathrm{mmol})$ and 1.56 m BuLi in hexane $\left(1.82 \mathrm{~cm}^{3}, 2.84\right.$ $\mathrm{mmol})$ in dry THF $\left(15 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$, was added $22(352 \mathrm{mg}$, 2.03 mmol) in dry THF ($15 \mathrm{~cm}^{3}$). After thr mixture had been stirred for 30 min at $-78^{\circ} \mathrm{C}$, an excess of gaseous formaldehyde was introduced at $-78^{\circ} \mathrm{C}$. The mixture was then further stirred
for 70 min at the same temperature after which it was partitioned between 10% aq. HCl and $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was separated, washed with saturated aq. NaHCO_{3} and brine, dried and evaporated. The residue was subjected to column chromatography on silica gel with AcOEt-hexane (3:7, v/v) as the eluent to give $\mathbf{2 3}$ ($239 \mathrm{mg}, 58 \%$) as a solid. Recrystallization of this from $\mathrm{Et}_{2} \mathrm{O}$-hexane afforded needles, $\mathrm{mp} 66.0-66.5^{\circ} \mathrm{C}$ (Found: C, $60.35 ; \mathrm{H}, 5.3 . \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{FO}_{3}$ requires C, 60.6 ; H, 5.6\%); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3620,3500,1750$ and $1265 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 2.32(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.83(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.94-4.12(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}), 4.22-4.46(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and $7.36-7.59(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \mathrm{m} / \mathrm{z}$ (EI) $198\left(\mathrm{M}^{+}\right)$.

3-Benzyloxy-1,2-epoxy-2-methylpropane 27

A mixture of $\mathbf{2 6}^{12}(13.3 \mathrm{~g}, 88.5 \mathrm{mmol}), \mathrm{NaHCO}_{3}(22.3 \mathrm{~g}, 266$ $\mathrm{mmol})$ and m-CPBA ($22.9 \mathrm{~g}, 106 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(200 \mathrm{~cm}^{3}\right)$ was stirred for 2 h at room temperature. The reaction mixture was partitioned between 10% aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was separated, washed with saturated aq. NaHCO_{3} and brine, dried and evaporated. The product was purified by column chromatography on silica gel with AcOEthexane ($1: 39 \mathrm{v} / \mathrm{v}$) as the eluent to give $27(10.7 \mathrm{~g}, 73 \%)$ as an oil; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1110 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.40(3 \mathrm{H}, \mathrm{s}$, $2-\mathrm{Me}), 2.63(1 \mathrm{H}, \mathrm{d}, J 4.8,1-\mathrm{H}), 2.75(1 \mathrm{H}, \mathrm{d}, J 4.8,1-\mathrm{H}), 3.46$ $(1 \mathrm{H}, \mathrm{d}, J 11.0,3-\mathrm{H}), 3.58(1 \mathrm{H}, \mathrm{d}, J 11.0,3-\mathrm{H}), 4.54(1 \mathrm{H}, \mathrm{d}$, J 12.1, OCHHPh $), 4.60(1 \mathrm{H}, \mathrm{d}, J 12.1, \mathrm{OCH} H \mathrm{Ph})$ and 7.34 (5H, s, Ph); m/z (EI) $177.0916\left(\mathrm{M}^{+}-\mathrm{H} . \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{2}\right.$ requires 177.0899).

3-Benzyloxy-2-fluoro-2-methylpropanol 28

To a stirred solution of diisopropylethylamine $\left(9.73 \mathrm{~cm}^{3}, 55.8\right.$ $\mathrm{mmol})$ and water $\left(4.02 \mathrm{~cm}^{3}, 223 \mathrm{mmol}\right)$ in $\mathrm{Et}_{2} \mathrm{O}\left(100 \mathrm{~cm}^{3}\right)$ with ice cooling was slowly added a solution of $27(9.28 \mathrm{~g}, 55.8$ $\mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}\left(50 \mathrm{~cm}^{3}\right)$. During the addition, an excess of tetrafluorosilane was simultaneously introduced to the reaction mixture. After being stirred for 2 h at $0^{\circ} \mathrm{C}$ followed by treatment with potassium fluoride (30 g), the mixture was extracted with AcOEt. The extract was washed with brine, dried and evaporated to give a residue, which was subjected to chromatography on silica gel. Elution with AcOEt-hexane (1:17, v/v) gave $28(7.10 \mathrm{~g}, 69 \%)$ as an oil (Found: C, 66.75; H, 7.7. $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{FO}_{2}$ requires $\mathrm{C}, 66.65 ; \mathrm{H}, 7.65 \%$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}$ $3400 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.36(3 \mathrm{H}, \mathrm{d}, J 22.3,2-\mathrm{Me}), 1.95-$ $2.00(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.38-3.79\left(4 \mathrm{H}, \mathrm{m}, 1-\mathrm{and} 3-\mathrm{H}_{2}\right), 4.59(2 \mathrm{H}$, d, J 3.3, $\mathrm{OCH}_{2} \mathrm{Ph}$) and $7.22-7.38(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; ~ m / z$ (EI) 198 $\left(\mathrm{M}^{+}\right)$.

4-Benzyloxy-3-fluoro-3-methylbutan-2-ol 29

To a stirred mixture of Dess-Martin periodinane ($2.51 \mathrm{~g}, 5.92$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3.5 \mathrm{~cm}^{3}\right)$ at room temperature was added a solution of $\mathbf{2 8}(3.63 \mathrm{mg}, 1.83 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4.5 \mathrm{~cm}^{3}\right)$. After being stirred for 2 h , the mixture was partitioned between saturated aq. $\mathrm{NaHCO}_{3}-2 \%$ aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1: 7, \mathrm{v} / \mathrm{v})$ and $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was separated, washed with water and brine, dried and evaporated to afford the crude aldehyde, which was used in the following reaction without purification.

To a stirred solution of the above product in dry THF (15 cm^{3}) at $0{ }^{\circ} \mathrm{C}$ was added 1.04 m MeLi in $\mathrm{Et}_{2} \mathrm{O}\left(2.28 \mathrm{~cm}^{3}, 2.37\right.$ $\mathrm{mmol})$. The mixture was stirred for 12 h at the same temperature and then poured into saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ with ice cooling. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the extract was washed with brine, dried and evaporated. Column chromatography of the product on silica gel with AcOEt-hexane (1:9, v / v) as the eluent provided 29 ($293 \mathrm{mg}, 75 \%$) as an oil (Found: $\mathrm{C}, 67.8 ; \mathrm{H}, 8.0 . \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{FO}_{2}$ requires $\mathrm{C}, 67.9 ; \mathrm{H}, 8.05 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3450 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.15-1.23(3 \mathrm{H}, \mathrm{m}$, $\left.1-\mathrm{H}_{3}\right), 1.31$ and $1.33[3 \mathrm{H},(1: 1.7)$, each d, each $J 22.3,3-\mathrm{Me}]$, 2.23-2.34 (1H, m, OH), 2.47-2.73 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}$), 3.94-4.08 $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{H}), 4.55-4.62\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}\right)$ and $7.24-7.44(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}) ; m / z(\mathrm{EI}) 212\left(\mathrm{M}^{+}\right)$.

3-Benzyloxy-2-fluoro-1,2-dimethylpropyl benzoate 30

A mixture of 29 ($185 \mathrm{mg}, 0.872 \mathrm{mmol}$) and benzoyl chloride $\left(0.163 \mathrm{~cm}^{3}, 1.40 \mathrm{mmol}\right)$ in dry pyridine $\left(0.377 \mathrm{~cm}^{3}, 4.67 \mathrm{mmol}\right)$ was stirred for 2.5 h at room temperature. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the mixture was washed with water, 10% aq. KHSO_{4} and brine, dried and evaporated. The residue was chromatographed on silica gel with AcOEt-hexane ($1: 9, \mathrm{v} / \mathrm{v}$) as the eluent to give $30(277 \mathrm{mg}, 98 \%)$ as a pale yellowish oil (Found: C, 71.8; $\mathrm{H}, 6.55 . \mathrm{C}_{19} \mathrm{H}_{21} \mathrm{FO}_{3}$ requires $\mathrm{C}, 72.15 ; \mathrm{H}, 6.7 \%$); $v_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1} 1720 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.34-1.40(3 \mathrm{H}, \mathrm{m}, 1-\mathrm{Me})$, $1.42-1.52(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{Me}), 3.56-3.66\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 4.54-4.58$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.34-5.48(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 7.22-7.72(8 \mathrm{H}, \mathrm{m}$, $8 \times \mathrm{ArH})$ and $7.98-8.18(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH}) ; \mathrm{m} / \mathrm{z}$ (EI) 316 $\left(\mathrm{M}^{+}\right)$.

2-Fluoro-3-hydroxy-1,2-dimethylpropyl benzoate 31

A mixture of $\mathbf{3 0}(975 \mathrm{mg}, 3.08 \mathrm{mmol}), 10 \% \mathrm{Pd}-\mathrm{C}(25 \mathrm{mg})$ and $\mathrm{AcOH}\left(6 \times 10^{-3} \mathrm{~cm}^{3}\right)$ in $\mathrm{MeOH}\left(12 \mathrm{~cm}^{3}\right)$ was stirred for 12 h at room temperature under a H_{2} atmosphere. The mixture was filtered through Celite after which it was evaporated to afford a residue. This was purified by column chromatography on silica gel. Elution with AcOEt-hexane ($1: 4, \mathrm{v} / \mathrm{v}$) afforded a $1.7: 1$ mixture of alcohols ($565 \mathrm{mg}, 81 \%$). The major isomer 31 was separated by HPLC using Dynamax Microsorb silica ($5 \mu \mathrm{~m}$, $4 \times 250 \mathrm{~mm})$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane-AcOEt ($2: 8: 1, \mathrm{v} / \mathrm{v} / \mathrm{v}, 1.0$ $\mathrm{cm}^{3} \mathrm{~min}^{-1}$) as the eluent (Found: C, 63.9; H, 6.75. $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{FO}_{3}$ requires $\mathrm{C}, 63.7 ; \mathrm{H}, 6.7 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3500$ and 1720 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.42(3 \mathrm{H}, \mathrm{d}, J 22.0,2-\mathrm{Me}), 1.44(3 \mathrm{H}, \mathrm{dd}$, $J 6.6$ and $1.5,1-\mathrm{Me}), 2.26-2.32(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.66-3.80(2 \mathrm{H}$, $\left.\mathrm{m}, 3-\mathrm{H}_{2}\right), 5.45(1 \mathrm{H}, \mathrm{dq}, J 14.7$ and $6.6,1-\mathrm{H}), 7.62-7.43(3 \mathrm{H}$, $\mathrm{m}, 3 \times \mathrm{ArH}$) and $8.01-8.04(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH}) ; \mathrm{m} / \mathrm{z}$ (EI) 209 $\left(\mathrm{M}^{+}-\mathrm{OH}\right)$.

Methyl 3-benzyloxy-2-fluoro-2-methylpropionate 32

After the oxidation of $28(1.66 \mathrm{~g}, 8.38 \mathrm{mmol})$ using DessMartin periodinane ($11.5 \mathrm{~g}, 27.1 \mathrm{mmol}$), to a stirred mixture of the resulting aldehyde, tert-butyl alcohol $\left(45 \mathrm{~cm}^{3}\right), \mathrm{pH} 3.5$ phosphate buffer ($30 \mathrm{~cm}^{3}$) and 2-methylbut-2-ene $\left(2.88 \mathrm{~cm}^{3}\right.$, $27.1 \mathrm{mmol})$ at room temperature was added $\mathrm{NaClO}_{2}(2.03 \mathrm{~g}$, 18.0 mmol). The mixture was stirred for 2 h at room temperature and then diluted with $\mathrm{Et}_{2} \mathrm{O}$. After acidification by addition of 10% aq. KHSO_{4} with ice cooling, the mixture was extracted with AcOEt. The extract was washed with brine, dried and evaporated to give the corresponding acid, which was used in the following reaction without purification.

A mixture of the crude acid and an excess of diazomethane in THF ($35 \mathrm{~cm}^{3}$) was kept for 3 h at room temperature. Concentration of the mixture under reduced pressure afforded a residue, which was chromatographed on silica gel. Elution with $\mathrm{Et}_{2} \mathrm{O}$-hexane ($2: 9$, v/v) provided $32(1.76 \mathrm{~g}, 93 \%)$ as an oil, $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1760 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.54(3 \mathrm{H}, \mathrm{d}, J 21.2$, $2-\mathrm{Me}), 3.59-3.86\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.51-4.68$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Ph}\right)$ and $7.21-7.36$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m / z (EI) 226.1043 $\left(\mathrm{M}^{+} . \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{FO}_{3}\right.$ requires 226.1005).

4-Benzyloxy-3-fluoro-2,3-dimethylbutan-2-ol 33

To a solution of 1.04 m MeLi in $\mathrm{Et}_{2} \mathrm{O}\left(0.605 \mathrm{~cm}^{3}, 0.629 \mathrm{mmol}\right)$ in dry THF $\left(1.5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added a solution of $32(65 \mathrm{mg}$, $0.29 \mathrm{mmol})$ in dry THF $\left(2.0 \mathrm{~cm}^{3}\right)$, and the mixture was stirred for 15 min at $0^{\circ} \mathrm{C}$. After being poured onto saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with brine, dried and evaporated to give a residue, which was subjected to silica gel column chromatography. Elution with AcOEt-hexane ($1: 17, \mathrm{v} / \mathrm{v}$) afforded 33 (56 mg , 87%) as an oil (Found: C, 69.0; H, 8.45. $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{FO}_{2}$ requires C, $68.85 ; \mathrm{H}, 8.27 \%) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3450 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.23(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.26(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.40(3 \mathrm{H}, \mathrm{d}, J 22.7$, $2-\mathrm{Me}), 2.82(1 \mathrm{H}, \mathrm{d}, J 1.8, \mathrm{OH}), 3.69\left(2 \mathrm{H}, \mathrm{d}, J 18.3,4-\mathrm{H}_{2}\right)$, $4.59\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right)$ and $7.28-7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI})$ $226\left(\mathrm{M}^{+}\right)$.

2-Fluoro-2,3-dimethylbutane-1,3-diol 34

A mixture of $33(980 \mathrm{mg}, 4.33 \mathrm{mmol}), 10 \% \mathrm{Pd}-\mathrm{C}(20 \mathrm{mg})$ and $\mathrm{AcOH}\left(6 \times 10^{-3} \mathrm{~cm}^{3}\right)$ in $\mathrm{MeOH}\left(20 \mathrm{~cm}^{3}\right)$ was stirred for 12 h at room temperature under an H_{2} atmosphere. The mixture was filtered through Celite, after which evaporation of the filtrate gave a residue, which was chromatographed on silica gel. Elution with AcOEt-hexane ($2: 3, \mathrm{v} / \mathrm{v}$) provided $34(464 \mathrm{mg}, 79 \%)$ as an oil, $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3400 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.27$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.30(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.34(3 \mathrm{H}, \mathrm{d}, J 22.0,2-\mathrm{Me})$, $2.56-2.62(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.63-2.78(1 \mathrm{H}, \mathrm{br}$ s, OH$), 3.65-3.76$ $(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$ and $3.92-4.03(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 121.0665$ $\left(\mathrm{M}^{+}-\mathrm{Me} . \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{FO}_{2}\right.$ requires 121.0677).

3-(tert-Butyldimethylsiloxy)-2-fluoro-2,3-dimethylbutan-1-ol 36 An oil (85%), $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3350 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.10$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.11(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.84\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 1.27(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 1.28$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 1.36 ($3 \mathrm{H}, \mathrm{d}, J 22.3,2-\mathrm{Me}$), 2.40-2.79 $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.58-3.76(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$ and $3.80-3.92(1 \mathrm{H}, \mathrm{m}$, $1-\mathrm{H}) ; m / z$ (EI) $235.1509\left(\mathrm{M}^{+}-\mathrm{Me} . \mathrm{C}_{11} \mathrm{H}_{24} \mathrm{FO}_{2} \mathrm{Si}\right.$ requires 235.1530).

1-Benzyloxy-3-(tert-butyldimethylsiloxy)-2-fluoro-2,3-dimethylbutane 35

To a stirred mixture of $\mathbf{3 3}(12.0 \mathrm{mg}, 53 \mu \mathrm{~mol})$ and $2,6-$ dimethylpyridine ($0.015 \mathrm{~cm}^{3}, 0.133 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(0.5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added tert-butyldimethylsilyl trifluoromethanesulfonate ($0.016 \mathrm{~cm}^{3}, 69 \mu \mathrm{~mol}$), and the mixture was stirred for 2 h at the same temperature. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the mixture was washed with water, 10% aq. KHSO_{4} and brine, dried and evaporated to give a residue. This was purified by silica gel column chromatography. Elution with AcOEthexane ($1: 19 \mathrm{v} / \mathrm{v}$) afforded $35(16.0 \mathrm{mg}, 90 \%)$ as a pale yellowish oil (Found: C, 67.05; H, 9.75; $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{FO}_{2} \mathrm{Si}$ requires C, $67.0 ; \mathrm{H}, 9.75 \%) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 1260 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $0.05(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.07(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.80\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{1}\right)$, $1.24(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me}), 1.39(3 \mathrm{H}, \mathrm{d}, J 22.3,2-\mathrm{Me}), 3.54-3.76$ $\left(2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{2}\right), 4.49(1 \mathrm{H}, \mathrm{d}, J 12.1, \mathrm{OCHHPh}), 4.66(1 \mathrm{H}, \mathrm{d}$, $J 12.1, \mathrm{OCH} H \mathrm{Ph})$ and $7.26-7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z$ (EI) 283 $\left(\mathrm{M}^{+}-\mathrm{Bu}^{+}\right)$.

1-Benzyloxy-3-(tert-butyldimethylsiloxy)-2,3-dimethylbutane 41 An oil (91%) (Found: C, $70.55 ; \mathrm{H}, 10.6 . \mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}$ requires C, $70.75 ; \mathrm{H}, 10.65 \%) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 1260 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $0.03\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.81\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 0.97(3 \mathrm{H}, \mathrm{d}, J 6.9,2-\mathrm{Me})$, 1.18 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 1.24 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 1.69-1.81 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), 3.21 $(1 \mathrm{H}, \mathrm{t}, J 9.1,1-\mathrm{H}), 3.69(1 \mathrm{H}$, dd, $J 9.1$ and $3.8,1-\mathrm{H}), 4.44(1 \mathrm{H}$, d, $J 11.9, \mathrm{OC} H \mathrm{HPh}), 4.49(1 \mathrm{H}, \mathrm{d}, J 11.9, \mathrm{OCH} H \mathrm{Ph})$ and $7.22-$ $7.34(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z(\mathrm{EI}) 265\left(\mathrm{M}^{+}-\mathrm{Bu}^{t}\right)$

3-(tert-Butyldimethylsiloxy)-2-phenylpropan-1-ol 38

To a suspension of $\mathrm{LiAlH}_{4}(2.85 \mathrm{~g}, 75.1 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(200$ cm^{3}) at $0^{\circ} \mathrm{C}$ was added a solution of dimethyl phenylmalonate $(12.1 \mathrm{~g}, 51.0 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}\left(50 \mathrm{~cm}^{3}\right)$, and the mixture was stirred for 22 h at room temperature. After addition of $\mathrm{Et}_{2} \mathrm{O}$ and water $\left(10.0 \mathrm{~cm}^{3}\right)$, the mixture was further stirred and then filtered through Celite. Evaporation of the filtrate gave the crude diol $(8.85 \mathrm{~g})$ as a colourless oil.

To a mixture of the above product, tert-butyldimethylsilyl chloride ($4.12 \mathrm{~g}, 26.5 \mathrm{mmol}$) and DMAP ($162 \mathrm{mg}, 1.33 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(26 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added triethylamine (4.06 $\mathrm{cm}^{3}, 29.2 \mathrm{mmol}$), and the mixture was stirred for 12 h at room temperature. The mixture was partitioned between water and $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was separated, washed with 10% aq. KHSO_{4} and brine, dried and evaporated. Column chromatography of the residue on silica gel with AcOEt-hexane ($1: 19, \mathrm{v} / \mathrm{v}$) afforded $38(2.99 \mathrm{~g}, 44 \%)$ as an oil (Found: C, 67.7; $\mathrm{H}, 9.8 . \mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}$ requires $\mathrm{C}, 67.6 ; \mathrm{H}, 9.85 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1}$ $3400 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.00\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.85(9 \mathrm{H}, \mathrm{s}$, $\mathrm{Bu}^{\text {t }}$), $2.30-3.30(2 \mathrm{H}, \mathrm{m}), 3.50-4.30(4 \mathrm{H}, \mathrm{m})$ and $7.00-7.50(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}) ; m / z(\mathrm{EI}) 209\left(\mathrm{M}^{+}-\mathrm{Bu}^{t}\right)$.

4-Benzyloxy-2,3-dimethylbutan-2-ol 40

To a stirred solution of 1.04 m MeLi in $\mathrm{Et}_{2} \mathrm{O}\left(14.4 \mathrm{~cm}^{3}, 15.3\right.$ $\mathrm{mmol})$ in dry hexane $\left(15 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added a solution of $39^{13}(1.26 \mathrm{~g}, 6.11 \mathrm{mmol})$ in dry THF ($25 \mathrm{~cm}^{3}$). After being stirred for 10 min at $0^{\circ} \mathrm{C}$, the mixture was poured into saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with brine, dried and evaporated to give a residue, which was subjected to column chromatography on silica gel. Elution with AcOEt-hexane ($1: 5 \mathrm{v} / \mathrm{v}$) provided $40(1.40 \mathrm{~g}, 90 \%)$ as a pale yellowish oil; $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 3450 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 0.89 ($3 \mathrm{H}, \mathrm{d}, J 7.0,3-\mathrm{Me}$), 1.13 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $1.20(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $1.86-1.96(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.48-3.60\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 4.52(2 \mathrm{H}$, $\mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}$) and 7.27-7.38 (5H, m, Ph); m/z (EI) 193.1227 $\left(\mathrm{M}^{+}-\mathrm{Me} . \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{2}\right.$ requires 193.1228).

3-(tert-Butyldimethylsiloxy)-2,3-dimethylbutan-1-ol 42

A mixture of $41(1.09 \mathrm{~g}, 3.40 \mathrm{mmol})$ and $10 \% \mathrm{Pd}-\mathrm{C}(20 \mathrm{mg})$ in $\mathrm{MeOH}\left(15 \mathrm{~cm}^{3}\right)$ was stirred for 12 h at room temperature under an H_{2} atmosphere. Filtration through Celite, followed by evaporation of the filtrate, gave a residue, which was chromatographed on silica gel. Elution with AcOEt-hexane (3:17, v/v) provided 42 ($729 \mathrm{mg}, 93 \%$) as an oil (Found: C, $61.8 ; \mathrm{H}, 12.25$. $\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}$ requires C, $\left.62.0 ; \mathrm{H}, 12.1 \%\right)$; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3375$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.11\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 0.91$ $(3 \mathrm{H}, \mathrm{d}, J 7.1,2-\mathrm{Me}), 1.20(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.30(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.57-$ $1.71(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.34(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 4.7, \mathrm{OH})$ and $3.66(2 \mathrm{H}, \mathrm{m}$, $\left.1-\mathrm{H}_{2}\right) ; m / z(\mathrm{EI}) 175\left(\mathrm{M}^{+}-\mathrm{Bu}^{\prime}\right)$.

2,3-Dimethylbutane-2,4-diol 43

A pale yellowish oil $(96 \%), v_{\max }($ neat $) / \mathrm{cm}^{-1} 3550 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.86(3 \mathrm{H}, \mathrm{d}, J 7.3,2-\mathrm{Me}), 1.19(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.27(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 1.75-1.87(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.14-3.48(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{OH})$ and 3.64-3.74 ($2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}$); m/z (EI) $103.0776\left(\mathrm{M}^{+}-\mathrm{Me}\right.$. $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{O}_{2}$ requires 103.0758).

(-)-N-[(2R)-3-(tert-Butyldimethylsiloxy)-2-fluoro-2-methylpropylidene]benzylamine N-oxide 44

To a stirred mixture of Dess-Martin periodinane $(151 \mathrm{mg}$, 0.357 mmol) and pyridine ($55.0 \mathrm{mg}, 0.357 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(0.8 \mathrm{~cm}^{3}\right)$ at room temperature was added a solution of $\mathbf{1 7}$ (26.5 $\mathrm{mg}, 0.119 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.2 \mathrm{~cm}^{3}\right)$, and the mixture was stirred for 1 h at the same temperature. After addition of $\mathrm{Et}_{2} \mathrm{O}$, saturated aq. NaHCO_{3} and 10% aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, the resulting mixture was further stirred for 30 min at the same temperature. The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layer and extracts were washed with saturated aq. NaHCO_{3} and brine, dried and evaporated to give the aldehyde as an oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1745$ and $1260 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.05\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.07\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 0.89(3 \mathrm{H}, \mathrm{d}, J$ $10.3,2-\mathrm{Me}), 3.71-3.99\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right)$ and $9.78(\mathrm{~d}, J 5.1, \mathrm{CHO})$, which was used in the next reaction without purification.

A mixture of the above product and N-benzylhydroxylamine $(22.0 \mathrm{mg}, 0.179 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.65 \mathrm{~cm}^{3}\right)$ was stirred for 12 h at room temperature. After dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the mixture was washed with $10 \% \mathrm{KHSO}_{4}$ and brine, dried and evaporated to give a residue, which was purified by column chromatography on silica gel. Elution with AcOEt-hexane (3:7, v/v) provided $44(20.6 \mathrm{mg}, 53 \%)$ as an oil, $[a]_{\mathrm{D}}^{24}-41.4(c$ $\left.1.44, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1600$ and $1250 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.01\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{r}}\right), 1.60(3 \mathrm{H}, \mathrm{d}, J$ $22.7,2-\mathrm{Me}), 3.78(1 \mathrm{H}, \mathrm{dd}, J 18.9$ and $11.2,3-\mathrm{H}), 4.24(1 \mathrm{H}, \mathrm{dd}$, $J 30.9$ and $11.2,3-\mathrm{H}), 4.85(1 \mathrm{H}, \mathrm{d}, J 13.7, \mathrm{NCHHPh}), 4.90$ $(1 \mathrm{H}, \mathrm{d}, J 13.7, \mathrm{NCH} H \mathrm{Ph}), 6.74(1 \mathrm{H}, \mathrm{d}, J 12.1,1-\mathrm{H})$ and 7.38 $(5 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-5.5,-5.4,17.5,18.3$, $25.9,65.2,70.5,96.7,129.1,129.2,129.4,132.5$ and $138.3 ; m / z$ (EI) $325.1899\left(\mathrm{M}^{+} . \mathrm{C}_{17} \mathrm{H}_{28} \mathrm{FNO}_{2} \mathrm{Si}\right.$ requires 325.1873).

(-)-N-[(2R)-2-(tert-Butyldimethylsiloxymethyl)-2-fluorobutyl-

 idene]benzylamine N -oxide 45An oil (63%) : $[\alpha]_{\mathrm{D}}^{24}-46.9$ (c $\left.1.29, \mathrm{CHCl}_{3}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 1600$
and 1255; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.01\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.82-0.92$ $(12 \mathrm{H}, \mathrm{m}), 1.66-1.87(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.21-2.48(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.78$ ($1 \mathrm{H}, \mathrm{dd}, J 18.3$ and 11.3 , OCHHCF), 4.29 (1 H , dd, $J 31.7$ and 11.3, OCHHCF), $4.88\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 6.70(1 \mathrm{H}, \mathrm{d}, J 12.1$, $1-\mathrm{H})$ and $7.39(5 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-5.4,7.6$, 18.3, 24.1, 25.9, 64.5, 70.4, 99.7, 129.0, 129.1, 129.3, 132.5 and 137.8; m/z (EI) $339.2017 \quad\left(\mathrm{M}^{+} . \mathrm{C}_{18} \mathrm{H}_{30} \mathrm{FNO}_{2} \mathrm{Si}\right.$ requires $339.2030)$.

N-[3-(tert-Butyldimethylsiloxy)-2-fluoro-2-phenylpropylidene]benzylamine N-oxide 46

Needles (82%), mp $79.0-79.5^{\circ} \mathrm{C}$; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1610,1590$ and $1260 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.00(3 \mathrm{H}, \mathrm{s}$, $\mathrm{SiMe}), 0.84\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right), 4.02(1 \mathrm{H}, \mathrm{dd}, J 17.6$ and $11.4,3-\mathrm{H})$, $4.59(1 \mathrm{H}, \mathrm{dd}, J 31.5$ and $11.4,3-\mathrm{H}), 4.89\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 6.95$ $(1 \mathrm{H}, \mathrm{d}, J 11.7,1-\mathrm{H})$ and $7.20-7.52(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)-5.5,18.3,25.8,66.5,70.8,125.2,128.2,128.6,128.95$, 129.04, 129.3, 132.5 and $137.3 ; \mathrm{m} / \mathrm{z}$ (EI) $387.2030\left(\mathrm{M}^{+}\right.$. $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{FNO}_{2} \mathrm{Si}$ requires 387.2030).

N-(3-Benzoyloxy-2-fluoro-2-methylbutylidene)benzylamine

 N -oxide 47Needles (75%), mp 103-104 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 1720$ and 1600 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.30(3 \mathrm{H}, \mathrm{d}, J 6.6,3-\mathrm{Me}), 1.76(3 \mathrm{H}, \mathrm{d}, J$ $23.4,2-\mathrm{Me}), 4.92\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 5.87(1 \mathrm{H}, \mathrm{dq}, J 19.8$ and 6.6 , $3-\mathrm{H}), 6.77(1 \mathrm{H}, \mathrm{d}, J 12.8,1-\mathrm{H}), 7.35-7.58(8 \mathrm{H}, \mathrm{m}, 8 \times \mathrm{ArH})$ and 8.01-8.04 $(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH})$; m / z (EI) $329.1440\left(\mathrm{M}^{+}\right.$. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FNO}_{3}$ requires 329.1427).

N-(2-Fluoro-3-hydroxy-2,3-dimethylbutylidene)benzylamine N -oxide 48

A pale yellowish oil (44\%) (Found: C, 65.25; H, 7.6; N, 5.85. $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{FNO}_{2}$ requires $\left.\mathrm{C}, 65.15 ; \mathrm{H}, 7.45 ; \mathrm{N}, 5.9 \%\right)$; $v_{\text {max }}($ neat $) /$ $\mathrm{cm}^{-1} 3200$ and $1260 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.18(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $1.22(3 \mathrm{H}, \mathrm{d}, J 3.3, \mathrm{Me}), 1.67(3 \mathrm{H}, \mathrm{d}, J 23.1,2-\mathrm{Me}), 4.94(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 6.42(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 6.91(1 \mathrm{H}, \mathrm{d}, J 14.6,1-\mathrm{H})$ and 7.40-7.46 (5H, m, Ph); m/z (EI) 224 ($\mathrm{M}^{+}-\mathrm{Me}$).

N-[3-(tert-Butyldimethylsiloxy)-2-fluoro-2,3-dimethylbutylidene]benzylamine N-oxide 49

An oil (86\%) (Found: C, 64.25; H, 9.15; N, 4.2. $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{FNO}_{2} \mathrm{Si}$ requires C, $64.35 ; \mathrm{H}, 9.4 ; \mathrm{N}, 3.95 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1580$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-0.04(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.03(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$, $0.75\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 1.19(3 \mathrm{H}, \mathrm{d}, J 1.6, \mathrm{Me}), 1.20(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.70$ ($3 \mathrm{H}, \mathrm{d}, J 22.5,2-\mathrm{Me}$), $4.83-4.95\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 6.69(1 \mathrm{H}, \mathrm{d}$, $J 12.1,1-\mathrm{H})$ and $7.37(5 \mathrm{H}, \mathrm{s}) ; m / z(\mathrm{EI}) 296\left(\mathrm{M}^{+}-\mathrm{Bu}^{t}\right)$.

N-[3-(tert-Butyldimethylsiloxy)-2-methylpropylidene]benzylamine \boldsymbol{N}-oxide 52

An oil (81%), $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1595$ and $1250 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)-0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.00(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.84(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Bu}^{i}\right), 1.10(3 \mathrm{H}, \mathrm{d}, J 7.0,2-\mathrm{Me}), 3.13-3.27(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.55$ $(1 \mathrm{H}, \mathrm{dd}, J 9.8$ and $5.1,3-\mathrm{H}), 3.69(1 \mathrm{H}$, dd, $J 9.8$ and $4.6,3-\mathrm{H})$, $4.87\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 6.60(1 \mathrm{H}, \mathrm{d}, J 7.0,1-\mathrm{H})$ and $7.37(5 \mathrm{H}, \mathrm{s}$, $\mathrm{Ph}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-5.7,13.0,18.0,25.7,34.1,64.2,69.1$, 128.6, 128.7, 129.0, 132.7 and 142.2; m/z (EI) $307.1985\left(\mathrm{M}^{+}\right.$. $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{Si}$ requires 307.1968).

N-[2-(tert-Butyldimethylsiloxymethyl)butylidene]benzylamine

 N-oxide 53An oil (47%), $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1597,1590$ and $1260 ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)-0.03$, ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), $0.00(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.84$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 0.90(3 \mathrm{H}, \mathrm{t}, J 7.5,3-\mathrm{Me}), 1.44-1.65\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right)$, 2.99-3.11 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), $3.65(1 \mathrm{H}, \mathrm{dd}, J 9.9$ and $4.6, \mathrm{C} H \mathrm{HO})$, $3.74(1 \mathrm{H}, \mathrm{dd}, J 9.9$ and $4.2, \mathrm{CHHO}), 4.88\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right)$, $6.59(1 \mathrm{H}, \mathrm{d}, J 7.3,1-\mathrm{H})$ and $7.38(5 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ph}) ; \delta_{\mathrm{c}}(75 \mathrm{MHz}$, CDCl_{3}) $-5.9,11.2,17.7,21.0,25.4,61.6,69.0,128.3,128.6$, 132.7, 140.90 and 140.94; m/z (EI) $321.2130\left(\mathrm{M}^{+} . \mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{Si}\right.$ requires 321.2124).
N-[3-(tert-Butyldimethylsiloxy)-2-phenylpropylidene]benzylamine N-oxide 54
Needles (58%), mp 113.7-114.2 ${ }^{\circ} \mathrm{C}$ (Found: C, $71.6 ; \mathrm{H}, 8.5$; N, 3.8. $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{2}$ Si requires $\left.\mathrm{C}, 71.5 ; \mathrm{H}, 8.45 ; \mathrm{N}, 3.8 \%\right) ; v_{\max }($ neat $) /$ $\mathrm{cm}^{-1} 1590$ and $1260 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-0.08(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiMe}_{2}\right), 0.81\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 3.85(1 \mathrm{H}, \mathrm{dd}, J 9.8$ and $5.9,3-\mathrm{H}), 3.98$ (1 H , dd, $J 9.8$ and $4.9,3-\mathrm{H}), 4.31-4.40(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.91(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 6.98(1 \mathrm{H}, \mathrm{d}, J 7.3,1-\mathrm{H}), 7.22-7.32(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and 7.37-7.41 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-5.6,18.1,25.8$, 45.5, 64.4, 69.5, 127.0, 128.3, 128.4, 128.8, 129.0, 129.2, 132.8 , 138.6 and 139.2; m / z (EI) $369\left(\mathrm{M}^{+}\right)$.
N-(3-Hydroxy-2,3-dimethylbutylidene)benzylamine N-oxide 55 An oil $(27 \%), v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3450$ and $1600 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.08(3 \mathrm{H}, \mathrm{d}, J 7.1,2-\mathrm{Me}), 1.14(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.24(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 3.16-3.27(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.93\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH} \mathrm{H}_{2} \mathrm{Ph}\right), 6.70(1 \mathrm{H}$, $\mathrm{d}, J 7.4,1-\mathrm{H}$) and $7.31-7.43$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m / z (EI) 221.1407 $\left(\mathrm{M}^{+} . \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2}\right.$ requires 221.1415).

N-[3-(tert-Butyldimethylsiloxy)-2,3-dimethylbutylidene]benzylamine N-oxide 56

An oil (90%), $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1595 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-0.05$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.73\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 1.03(3 \mathrm{H}, \mathrm{d}$, $J 6.9,2-\mathrm{Me}), 1.11(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.18(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.98-3.07(1 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}), 4.86\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 6.59(1 \mathrm{H}, \mathrm{d}, J 8.0,1-\mathrm{H})$ and 7.36 (5H, s, Ph); m / z (EI) $278.1575\left(\mathrm{M}^{+}-\mathrm{Bu}^{t} . \mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{Si}\right.$ requires 278.1575).

2-Benzyl-3-[2'-(tert-butyldimethylsiloxy)-1'-fluoro-1'-methyl-ethyl]-5-ethoxyisoxazolidines 57

An oil (86%), $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1260 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $-0.02-0.10\left(6 \mathrm{H}, \mathrm{m}, \mathrm{SiMe}_{2}\right), 0.82-0.95$ ($9 \mathrm{H}, \mathrm{m}, \mathrm{Bu}^{+}$), 1.10-1.60 $(6 \mathrm{H}, \mathrm{m}), 1.87-2.67(2 \mathrm{H}, \mathrm{m}), 3.23-4.45(7 \mathrm{H}, \mathrm{m}), 5.02-5.25(1 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{H}$) and 7.17-7.45 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m/z (EI) $397.2321\left(\mathrm{M}^{+}\right.$. $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{FNO}_{3} \mathrm{Si}$ requires 397.2341).

2-Benzyl-3-[1'-(tert-butyldimethylsiloxymethyl)-1'-fluoro-propyl]-5-ethoxyisoxazolidines 58

An oil (85%), $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1260$ and $1255 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, CDCl_{3}) 0.01-0.11 ($6 \mathrm{H}, \mathrm{m}, \mathrm{SiMe}_{2}$), 0.63-1.03 ($9 \mathrm{H}, \mathrm{m}, \mathrm{Bu}^{t}$), $1.10-$ $1.28(6 \mathrm{H}, \mathrm{m}), 1.52-2.68(6 \mathrm{H}, \mathrm{m}), 3.22-4.44(7 \mathrm{H}, \mathrm{m}), 5.01-5.22$ ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$) and 7.19-7.47 (5H, m, Ph); m / z (EI) 411.2581 $\left(\mathrm{M}^{+} . \mathrm{C}_{22} \mathrm{H}_{38} \mathrm{FNO}_{3} \mathrm{Si}\right.$ requires 411.2605).

2-Benzyl-3-[2'-(tert-butyldimethylsiloxy)-1'-fluoro-1'-phenyl-ethyl]-5-ethoxyisoxazolidines 59

An oil (97%), $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1260 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $-0.25-0.20\left(6 \mathrm{H}, \mathrm{m}, \mathrm{SiMe}_{2}\right), 0.60-1.30(12 \mathrm{H}, \mathrm{m}), 2.10-2.59(2 \mathrm{H}$, $\mathrm{m}), 3.13-4.50(7 \mathrm{H}, \mathrm{m}), 4.67-5.30(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 7.11-7.63(10 \mathrm{H}$, $\mathrm{m}, 2 \times \mathrm{Ph}) ; \mathrm{m} / \mathrm{z}$ (EI) $459.2642\left(\mathrm{M}^{+} . \mathrm{C}_{26} \mathrm{H}_{38} \mathrm{FNO}_{3} \mathrm{Si}\right.$ requires 459.2605).

2-Benzyl-3-(2'-benzoyloxy-1'-fluoro-1'-methylpropyl)-5-ethoxyisoxazolidines 60
A pale yellowish oil (100%), $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1720$ and 1180 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.98-1.58(9 \mathrm{H}, \mathrm{m}), 2.33-2.77(2 \mathrm{H}, \mathrm{m})$, 3.25-4.44 (6H, m), 5.12-5.66 ($2 \mathrm{H}, \mathrm{m}$), $7.23-7.59(8 \mathrm{H}, \mathrm{m})$ and 7.94-8.04 (2H, m); m/z (EI) $401.2011\left(\mathrm{M}^{+} . \mathrm{C}_{23} \mathrm{H}_{28} \mathrm{FNO}_{4}\right.$ requires 401.2003).

2-Benzyl-3-(1'-fluoro-2'-hydroxy-1', $\mathbf{2}^{\prime}$ '-dimethylpropyl)-5ethoxyisoxazolidines 61

Compound 61A: a pale yellowish oil (55%), $v_{\max }($ neat $) / \mathrm{cm}^{-1}$ 3350; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.12-1.51(12 \mathrm{H}, \mathrm{m}), 2.38-2.86$ $(2 \mathrm{H}, \mathrm{m}), 3.36-4.69(6 \mathrm{H}, \mathrm{m}), 5.26-5.32(1 \mathrm{H}, \mathrm{m})$ and $7.26-7.36$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m / z (EI) $311.1897\left(\mathrm{M}^{+} . \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{FNO}_{3}\right.$ requires 311.1874).

Compound 61B: a pale yellowish oil (28\%), $v_{\max }($ neat $) / \mathrm{cm}^{-1}$ $3400 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.89(3 \mathrm{H}, \mathrm{s}), 1.12-1.28(9 \mathrm{H}, \mathrm{m})$, $3.30-4.44(5 \mathrm{H}, \mathrm{m}), 5.07-5.38(1 \mathrm{H}, \mathrm{m}), 6.00-6.20(1 \mathrm{H}, \mathrm{m})$ and
7.27-7.43 (5H, m, Ph); m/z (EI) $311.1914\left(\mathrm{M}^{+} . \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{FNO}_{3}\right.$ requires 311.1874).

2-Benzyl-3-[2'-(tert-butyldimethylsiloxy)-1'-fluoro-1', $\mathbf{2}^{\prime}$-dimethyl-propyl]-5-ethoxyisoxazolidines 62

Compound 62A: an oil $(80 \%), v_{\max }($ neat $) / \mathrm{cm}^{-1} 1170 ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.08-0.15(6 \mathrm{H}, \mathrm{m}), 0.84-0.90(9 \mathrm{H}, \mathrm{m}), 1.13-1.56$ $(12 \mathrm{H}, \mathrm{m}), 2.42-2.86(2 \mathrm{H}, \mathrm{m}), 3.28-4.46(5 \mathrm{H}, \mathrm{m}), 5.16-5.34(1 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{H})$ and $7.22-7.42(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z(\mathrm{EI}) 425.2768\left(\mathrm{M}^{+}\right.$. $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{FNO}_{3}$ Si requires 425.2759).

Compound 62B: a pale yellowish oil (84%), $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}$ $1180 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.90-0.16\left(6 \mathrm{H}, \mathrm{m}, \mathrm{SiMe}_{2}\right), 0.86-$ $0.90\left(9 \mathrm{H}, \mathrm{m}, \mathrm{Bu}^{t}\right), 1.09-1.58(12 \mathrm{H}, \mathrm{m}), 2.11-2.48(2 \mathrm{H}, \mathrm{m}), 3.24$ $4.52(5 \mathrm{H}, \mathrm{m}), 4.98-5.08(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and $7.21-7.44(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}) ; m / z(\mathrm{EI}) 425.2769\left(\mathrm{M}^{+} . \mathrm{C}_{23} \mathrm{H}_{40} \mathrm{FNO}_{3} \mathrm{Si}\right.$ requires 425.2759).

2-Benzyl-3-[2'-(tert-butyldimethylsiloxy)-1'-methylethyl]-5ethoxyisoxazolidines 63

An oil (84%), $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 1260 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $-0.01-0.30\left(6 \mathrm{H}, \mathrm{m}, \mathrm{SiMe}_{2}\right), 0.91-1.27(15 \mathrm{H}, \mathrm{m}), 1.30-2.55(3 \mathrm{H}$, m), 2.87-3.03 ($1 \mathrm{H}, \mathrm{m}$), 3.31-4.28 ($6 \mathrm{H}, \mathrm{m}$), $5.09-5.18(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H})$ and $7.23-7.43(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \mathrm{m} / z(\mathrm{EI}) 379.2546\left(\mathrm{M}^{+}\right.$ $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{NO}_{3} \mathrm{Si}$ requires 379.2543).

2-Benzyl-3-[1'-(tert-butyldimethylsiloxymethyl)propyl]-5ethoxyisoxazolidines 64

An oil (88%), $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1260 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $-0.10-0.04\left(6 \mathrm{H}, \mathrm{m}, \mathrm{SiMe}_{2}\right), 0.93-1.72(17 \mathrm{H}, \mathrm{m}), 2.20-2.26(1 \mathrm{H}$, $\mathrm{m}), 2.32-2.49(1 \mathrm{H}, \mathrm{m}), 2.95-3.14(1 \mathrm{H}, \mathrm{m}), 3.30-3.89(6 \mathrm{H}, \mathrm{m})$, $4.05-4.28(1 \mathrm{H}, \mathrm{m}), 5.05-5.19(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and $7.20-7.46(5 \mathrm{H}$, $\mathrm{m}) ; m / z(\mathrm{EI}) 393.2694\left(\mathrm{M}^{+} . \mathrm{C}_{22} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{Si}\right.$ requires 393.2699).

2-Benzyl-3-[2'-(tert-butyldimethylsiloxy)-1'-phenylethyl]-5ethoxyisoxazolidines 65
An oil (95%), $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1260$ and $1255 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)-0.10-0.06\left(6 \mathrm{H}, \mathrm{m}, \mathrm{SiMe}_{2}\right), 1.16-1.40\left(9 \mathrm{H}, \mathrm{m}, \mathrm{Bu}^{t}\right)$, $1.52-1.55(3 \mathrm{H}, \mathrm{m}), 2.15-2.40(1 \mathrm{H}, \mathrm{m}), 3.17-4.46(9 \mathrm{H}, \mathrm{m}), 5.19-$ $5.30(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and $7.19-7.60(10 \mathrm{H}, \mathrm{m}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 441.2686$ $\left(\mathrm{M}^{+} . \mathrm{C}_{26} \mathrm{H}_{39} \mathrm{NO}_{3}\right.$ Si requires 441.2699$)$.

2-Benzyl-3-(2'-hydroxy-1', 2'-dimethylpropyl)-5-ethoxyisoxazol-

 idines 66Compound 66A: an oil (32\%), $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1260 ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.84-1.74(12 \mathrm{H}, \mathrm{m}), 1.89-2.72(2 \mathrm{H}, \mathrm{m}), 3.12-$ $4.23(5 \mathrm{H}, \mathrm{m}), 5.08-5.17(1 \mathrm{H}, \mathrm{m})$ and $7.22-7.43(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \mathrm{m} / \mathrm{z}$ (EI) $247.1594\left(\mathrm{M}^{+}-\mathrm{HOEt} . \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2}\right.$ requires 247.1571).

Compound 66B: an oil (34%), $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 3350$ and 1280; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.78-1.32(12 \mathrm{H}, \mathrm{m}), 2.06-2.67(2 \mathrm{H}, \mathrm{m})$, $3.14-4.39(5 \mathrm{H}, \mathrm{m}), 5.31-5.34(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and $7.25-7.40(5 \mathrm{H}$, $\mathrm{m}) ; m / z(\mathrm{EI}) 247.1553$.

2-Benzyl-3-[2'-(tert-butyldimethylsiloxy)-1', $\mathbf{2}^{\prime}$-dimethylpropyl]-5-ethoxyisoxazolidines 67B

An oil (60\%) (Found: C, 68.1; H, 10.0; N, 3.55. $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{NO}_{3} \mathrm{Si}$ requires $\mathrm{C}, 67.95 ; \mathrm{H}, 9.9 ; \mathrm{N}, 3.45 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1160$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.04-0.09\left(6 \mathrm{H}, \mathrm{m}, \mathrm{SiMe}_{2}\right), 0.82-1.24(9 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{Bu}^{t}\right), 1.62-1.71(1 \mathrm{H}, \mathrm{m}), 2.04-2.39(2 \mathrm{H}, \mathrm{m}), 3.02-4.22(5 \mathrm{H}$, $\mathrm{m}), 5.02-5.05(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and $7.18-7.43(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI})$ $407\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

6-Benzyl-4-fluoro-4-methyl-2,7-dioxa-6-azabicyclo[3.2.1]octanes 68A, B

A mixture of $\mathbf{5 7 A}, \mathbf{B}(51.9 \mathrm{mg}, 0.136 \mathrm{mmol})$ and toluene- p sulfonic acid $(13.0 \mathrm{mg}, 0.068 \mathrm{mmol})$ in benzene $\left(2.0 \mathrm{~cm}^{3}\right)$ was heated under reflux for 7 h . After dilution with AcOEt , the mixture was washed with saturated aq. NaHCO_{3} and brine, dried and evaporated to give a residue, which was subjected to column chromatography on silica gel. Elution with AcOEthexane ($1: 10, \mathrm{v} / \mathrm{v}$) provided $\mathbf{6 8 A}(12.0 \mathrm{mg}, 40 \%)$ as an oil, $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1460$ and $1450 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.16(3 \mathrm{H}$, d, $J 21.4,4-\mathrm{Me}), 2.02-2.11(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.62(1 \mathrm{H}, \mathrm{dd}, J 11.9$
and $2.8,8-\mathrm{H}), 3.41(1 \mathrm{H}$, br d, $J 4.9,5-\mathrm{H}), 3.65(1 \mathrm{H}$, br dd, J $15.6,12.2,3-\mathrm{H}), 3.76(1 \mathrm{H}, \mathrm{br}$ d, $J 12.8, \mathrm{NCHHPh}), 3.82(1 \mathrm{H}, \mathrm{br}$ dd, $J 39.1,12.2,3-\mathrm{H}), 4.21(1 \mathrm{H}, \mathrm{d}, J 12.8, \mathrm{NCH} H \mathrm{Ph}), 5.62(1 \mathrm{H}$, br d, $J 3.7,1-\mathrm{H}$) and $7.16-7.57(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z$ (EI) 237.1141 $\left(\mathrm{M}^{+} . \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{FNO}_{2}\right.$ requires 237.1165).

Further elution with AcOEt-hexane afforded 68B (11.2 mg, 37%) as an oil, $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1440$ and $1420 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.47(3 \mathrm{H}, \mathrm{d}, J 22.6,4-\mathrm{Me}), 2.08(1 \mathrm{H}$, br dd, $J 12.5$ and $1.5,8-\mathrm{H}), 2.13-2.21(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 3.50(1 \mathrm{H}$, br dd, $J 8.5$, $6.1,5-\mathrm{H}), 3.56(1 \mathrm{H}$, br d, $J 10.4,3-\mathrm{H}), 3.88(1 \mathrm{H}, \mathrm{d}, J 13.4$, $\mathrm{NCHHPh}), 4.08(1 \mathrm{H}, \mathrm{dd}, J 11.0$ and $10.4,3-\mathrm{H}), 4.23(1 \mathrm{H}, \mathrm{d}$, $J 13.4, \mathrm{NH} H \mathrm{Ph}), 5.56(1 \mathrm{H}$, br dd, $J 5.5$ and $3.1,1-\mathrm{H})$ and 7.22 $7.46(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z(\mathrm{EI}) 237.1141$.

6-Benzyl-4-ethyl-4-fluoro-2,7-dioxa-6-azabicyclo[3.2.1]octanes

 69A, BCompound 69A: an oil (41\%), $[\alpha]_{\mathrm{D}}^{24}+54.5$ (c $0.47, \mathrm{CHCl}_{3}$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1440,1455$ and $1450 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $0.56\left(3 \mathrm{H}, \mathrm{t}, J 7.3,4-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.48(1 \mathrm{H}$, dq, $J 29.9$ and 7.3 , $4-\mathrm{CHH}), 1.55(1 \mathrm{H}, \mathrm{dq}, J 30.5$ and $7.3,4-\mathrm{CHH}), 2.06-2.14(1 \mathrm{H}$, $\mathrm{m}, 8-\mathrm{H}), 2.58(1 \mathrm{H}, \mathrm{dd}, 1 \mathrm{H}, J 11.9$ and $2.7,8-\mathrm{H}), 3.51(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $J 5.5,5-\mathrm{H}), 3.64(1 \mathrm{H}, \mathrm{dd}, J 15.9$ and $12.8,3-\mathrm{H}), 3.72(1 \mathrm{H}, \mathrm{d}, J$ 12.2, NCHHPh $, 3.81(1 \mathrm{H}, \mathrm{dd}, J 39.1$ and $12.8,3-\mathrm{H}), 4.23(1 \mathrm{H}$, d, $J 12.2, \mathrm{NCH} H \mathrm{Ph}), 5.63(1 \mathrm{H}$, br d, $J 3.1,1-\mathrm{H})$ and $7.28-7.38$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.4,26.3,32.0,60.7,62.0$, 67.5, 98.6, 128.0, 128.7, 129.4 and 136.5; m/z (EI) 251.1304 $\left(\mathrm{M}^{+} . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{FNO}_{2}\right.$ requires 251.1322).

Compound 69B: an oil $(36 \%),[\alpha]_{\mathrm{D}}^{24}-51.2\left(c 0.55, \mathrm{CHCl}_{3}\right)$; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1460$ and $1455 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.96(3 \mathrm{H}$, $\left.\mathrm{t}, J 7.3,4-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.83\left(2 \mathrm{H}, \mathrm{br} \mathrm{dq}, J 25.0,7.3,4-\mathrm{CH}_{2}\right), 2.05$ $(1 \mathrm{H}, \mathrm{br}$ dd, $J 12.2$ and $1.8,8-\mathrm{H}), 2.16(1 \mathrm{H}$, br ddd, $J 12.2,6.1$ and $3.1,8-\mathrm{H}), 3.56(1 \mathrm{H}$, br dd, $J 8.5$ and $6.1,1-\mathrm{H}), 3.60(1 \mathrm{H}$, br d, $J 11.0,3-\mathrm{H}), 3.90(1 \mathrm{H}, \mathrm{d}, J 13.4, \mathrm{NCHHPh}), 4.02(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J$ $11.0,3-\mathrm{H}), 4.22(1 \mathrm{H}, \mathrm{d}, J 13.4, \mathrm{NCH} H \mathrm{Ph}), 5.55(1 \mathrm{H}, \mathrm{dd}, J 5.5$ and $3.1,1-\mathrm{H})$ and $7.28-7.44(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $7.0,28.0,34.5,61.8,63.4,66.2,97.4,127.6,128.5,128.8$ and 136.9; m / z (EI) $251.1300\left(\mathrm{M}^{+}\right)$.

6-Benzyl-4-fluoro-4-phenyl-2,7-dioxa-6-azabicyclo[3.2.1]octanes 70A, B

Compound 70A: an oil (34\%), $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1490$ and 1450 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.10-2.24(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.84(1 \mathrm{H}, \mathrm{br} \mathrm{dd}$, $J 12.1$ and $3.3,8-\mathrm{H}), 3.73-3.91(3 \mathrm{H}, \mathrm{m}), 4.13(1 \mathrm{H}, \mathrm{d}, J 13.2$, $\mathrm{NC} H \mathrm{HPh}), 4.35(1 \mathrm{H}, \mathrm{dd}, J 40.1$ and $13.0,3-\mathrm{H}), 5.72(1 \mathrm{H}, \mathrm{br}$ d, $J 3.3,1-\mathrm{H})$ and $7.18-7.63(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z(\mathrm{EI}) 299.1342\left(\mathrm{M}^{+}\right.$. $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{FNO}_{2}$ requires 299.1322).

Compound 70B: an oil (38\%), $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1490$ and 1450 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.94(1 \mathrm{H}$, br d, $J 12.8,8-\mathrm{H}), 1.98-2.11$ $(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 3.70(1 \mathrm{H}$, br dd, $J 9.3$ and $6.0,5-\mathrm{H}), 3.95(1 \mathrm{H}, \mathrm{d}$, J 13.2, NCHHPh $, 4.17-4.43(3 \mathrm{H}, \mathrm{m}), 5.65(1 \mathrm{H}$, br dd, $J 5.5$ and 2.6, $1-\mathrm{H}$) and $7.23-7.55(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}) ; m / z$ (EI) $299.1333\left(\mathrm{M}^{+}\right)$.

6-Benzyl-4-fluoro-3,4-dimethyl-2,7-dioxa-6-azabicyclo[3.2.1]octanes 71 A , B
A mixture of $\mathbf{6 0 A}, \mathbf{B}(61.0 \mathrm{mg}, 0.151 \mathrm{mmol})$ and $\mathrm{KOH}(13 \mathrm{mg}$, $0.28 \mathrm{mmol})$ in $\mathrm{MeOH}\left(4.5 \mathrm{~cm}^{3}\right)$ was stirred for 19 h at room temperature. After concentration under reduced pressure, the residue was taken up into $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried and evaporated. Column chromatography of the residue on silica gel with AcOEt-hexane $(1: 17, \mathrm{v} / \mathrm{v})$ as eluent gave the corresponding alcohols $(40.0 \mathrm{mg}, 98 \%)$ as a pale yellowish oil, $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3500 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.25-$ $1.52(9 \mathrm{H}, \mathrm{m}), 2.37-2.81(2 \mathrm{H}, \mathrm{m}), 3.15-4.52(8 \mathrm{H}, \mathrm{m}), 5.02-5.32$ $(2 \mathrm{H}, \mathrm{m})$ and $7.23-7.41(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \mathrm{m} / z(\mathrm{EI}) 297.1717\left(\mathrm{M}^{+}\right.$. $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{FNO}_{3}$ requires 297.1740).

A mixture of the above alcohols $(26.0 \mathrm{mg}, 87 \mu \mathrm{~mol})$ and toluene- p-sulfonic acid $(9.2 \mathrm{mg}, 48 \mu \mathrm{~mol})$ in benzene $\left(3 \mathrm{~cm}^{3}\right)$ was heated for 6 h at $50^{\circ} \mathrm{C}$. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the mixture was washed with saturated aq. NaHCO_{3} and brine, dried and evaporated to afford a residue, which was subjected to column
chromatography on silica gel. Elution with $\mathrm{Et}_{2} \mathrm{O}$-hexane ($1: 7$, $\mathrm{v} / \mathrm{v})$ provided 71A ($13.6 \mathrm{mg}, 56 \%$) as a solid, $\mathrm{mp} 88-90^{\circ} \mathrm{C}$ (Found: C, 66.75; H, 7.25; N, 5.75. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{FNO}_{2}$ requires C, $66.9 ; \mathrm{H}, 7.2 ; \mathrm{N}, 5.55 \%) ; v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 1180 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.15(3 \mathrm{H}, \mathrm{d}, J 6.8,3-\mathrm{Me}), 1.29(3 \mathrm{H}, \mathrm{d}, J 22.3,4-\mathrm{Me})$, $2.04(1 \mathrm{H}, \mathrm{dd}, J 12.3$ and $1.7,8-\mathrm{H}), 2.12-2.20(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 3.51$ $(1 \mathrm{H}, \mathrm{dd}, J 9.3$ and $5.7,5-\mathrm{H}), 3.87(1 \mathrm{H}, \mathrm{d}, J 13.6, \mathrm{NCHHPh})$, $4.20(1 \mathrm{H}, \mathrm{d}, J 13.6, \mathrm{NCH} H \mathrm{Ph}), 4.29(1 \mathrm{H}, \mathrm{dq}, J 19.8$ and 6.8 , $3-\mathrm{H}), 5.51(1 \mathrm{H}, \mathrm{dd}, J 5.1$ and $2.9,1-\mathrm{H})$ and $7.23-7.44(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}) ; m / z(\mathrm{EI}) 251\left(\mathrm{M}^{+}\right)$.

Further elution gave 71B ($5.6 \mathrm{mg}, 22 \%$) as an oil (Found: C, $66.65 ; \mathrm{H}, 7.35 ; \mathrm{N}, 5.25) ; v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 1200 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.24(3 \mathrm{H}, \mathrm{d}, J 23.1,4-\mathrm{Me}), 1.39(3 \mathrm{H}, \mathrm{d}, J 7.3,3-\mathrm{Me})$, $2.00-2.11(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.58(1 \mathrm{H}, \mathrm{dd}, J 11.9$ and $2.4,8-\mathrm{H}), 3.37$ $(1 \mathrm{H}, \mathrm{t}, J 4.4,5-\mathrm{H}), 3.74(1 \mathrm{H}, \mathrm{d}, J 12.5, \mathrm{NC} H \mathrm{HPh}), 3.98(1 \mathrm{H}, \mathrm{dq}$, $J 24.2$ and $7.3,3-\mathrm{H}), 4.16(1 \mathrm{H}, \mathrm{d}, J 12.5, \mathrm{NCH} H \mathrm{Ph}), 5.63(1 \mathrm{H}$, d, $J 3.3,1-\mathrm{H})$ and $7.26-7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z(\mathrm{EI}) 251\left(\mathrm{M}^{+}\right)$.

6-Benzyl-4-fluoro-3,3,4-trimethyl-2,7-dioxa-6-azabicyclo[3.2.1]octanes 72A, B
Compound 72A: a pale yellowish oil (64\%) (Found: C, 67.75; $\mathrm{H}, 7.6 ; \mathrm{N}, 5.3 . \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{FNO}_{2}$ requires C, 67.9; $\mathrm{H}, 7.6$; $\mathrm{N}, 5.3 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1150 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.18(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me})$, $1.37(3 \mathrm{H}, \mathrm{d}, J 23.1,4-\mathrm{Me}), 1.85(3 \mathrm{H}, \mathrm{d}, J 6.6,3-\mathrm{Me}), 2.02(1 \mathrm{H}$, dd, $J 11.9$ and $2.1,8-\mathrm{H}), 2.15-2.23(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 3.48(1 \mathrm{H}, \mathrm{dd}$, $J 7.8$ and $6.2,5-\mathrm{H}), 3.85(1 \mathrm{H}, \mathrm{d}, J 13.5, \mathrm{NCHHPh}), 4.15(1 \mathrm{H}$, d, $J 13.5, \mathrm{NCH} H \mathrm{Ph}), 5.52-5.54(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$ and $7.26-7.45$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m/z (EI) $265\left(\mathrm{M}^{+}\right)$.

Compound 72B: a pale yellowish oil (53%) (Found: C, 68.0 ; $\mathrm{H}, 7.6 ; \mathrm{N}, 5.45) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 1150 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $1.19(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me}), 1.22(3 \mathrm{H}, \mathrm{d}, J 23.4,4-\mathrm{Me}), 1.50(3 \mathrm{H}, \mathrm{s}$, $3-\mathrm{Me}), 2.00-2.08(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.51(1 \mathrm{H}, \mathrm{dd}, J 11.7$ and 3.4 , $8-\mathrm{H}), 3.40(1 \mathrm{H}$, dd, $J 5.2$ and 1.1, $5-\mathrm{H}), 3.74(1 \mathrm{H}, \mathrm{d}, J 12.6$, $\mathrm{NC} H \mathrm{HPh}), 4.16(1 \mathrm{H}, \mathrm{d}, J 12.6, \mathrm{NCH} H \mathrm{Ph}), 5.61(1 \mathrm{H}, \mathrm{d}, J 3.3$, $1-\mathrm{H})$ and 7.26-7.40 (5H, m, Ph); m/z (EI) $265\left(\mathrm{M}^{+}\right)$.

6-Benzyl-4-methyl-2,7-dioxa-6-azabicyclo[3.2.1]octanes 73A, B Compound 73A: an oil (31\%), $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1460$ and 1450 ; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.05(3 \mathrm{H}, \mathrm{d}, J 7.3,4-\mathrm{Me}), 1.84-1.93(1 \mathrm{H}$, $\mathrm{m}, 4-\mathrm{H}), 1.94-1.98(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.30(1 \mathrm{H}, \mathrm{br}$ d, $J 11.6,8-\mathrm{H})$, $3.31(1 \mathrm{H}, \mathrm{br}$ d, $J 11.0,5-\mathrm{H}), 3.36(1 \mathrm{H}$, dd, $J 11.0$ and $4.9,3-\mathrm{H})$, $3.79(1 \mathrm{H}$, br d, $J 12.8$, NCHHPh), $4.18(1 \mathrm{H}$, br d, $J 12.8$, $\mathrm{NCH} H \mathrm{Ph}), 4.20(1 \mathrm{H}, \mathrm{br}$ dd, $J 11.0$ and $5.5,3-\mathrm{H}), 5.56(1 \mathrm{H}, \mathrm{br}$ d, $J 3.1,1-\mathrm{H}$) and 7.27-7.42 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m/z (EI) 219.1259 $\left(\mathrm{M}^{+}\right)$.

Compound 73B: an oil (50\%), $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1470$ and 1460; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.71(3 \mathrm{H}, \mathrm{d}, J 6.7,4-\mathrm{Me}), 1.78-1.86(1 \mathrm{H}$, $\mathrm{m}, 4-\mathrm{H}), 1.98(1 \mathrm{H}, \mathrm{br}$ d, $J 11.6,8-\mathrm{H}), 2.18-2.25(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H})$, $3.21(1 \mathrm{H}$, br d, $J 5.5,5-\mathrm{H}), 3.59(1 \mathrm{H}$, br t, $J 11.0,3-\mathrm{H}), 3.65(1 \mathrm{H}$, dd, $J 11.0$ and $6.7,3-\mathrm{H}), 3.73(1 \mathrm{H}, \mathrm{d}, J 12.8, \mathrm{NC} H \mathrm{HPh}), 4.21$ $(1 \mathrm{H}, \mathrm{d}, J 12.8, \mathrm{NCH} H \mathrm{Ph}), 5.59(1 \mathrm{H}, \mathrm{br}$ d, $J 3.7,1-\mathrm{H})$ and $7.25-$ $7.42(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z$ (EI) $219.1246\left(\mathrm{M}^{+} . \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}\right.$ requires 219.1259).

6-Benzyl-4-ethyl-2,7-dioxa-6-azabicyclo[3.2.1]octanes 74A, B
Compound 74A: an oil (40%), $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1465$ and 1455 ; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.88\left(3 \mathrm{H}, \mathrm{t}, J 7.3,4-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.34-1.44$ $(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{C} H \mathrm{H}), 1.45-1.55(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH} H), 1.55-1.63(1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}), 1.93-2.02(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.23(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 11.6,8-\mathrm{H}), 3.39-$ $3.42(\mathrm{~m}, 2 \mathrm{H}), 3.80(1 \mathrm{H}$, br d, $J 12.8, \mathrm{NC} H \mathrm{HPh}), 4.14(1 \mathrm{H}, \mathrm{dd}, J$ 11.0 and $4.6,3-\mathrm{H}), 4.17(1 \mathrm{H}$, br d, $J 12.8, \mathrm{NCH} H \mathrm{Ph}), 5.55(1 \mathrm{H}$, br d, $J 3.1,1-\mathrm{H}$) and $7.25-7.42(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z$ (EI) 233.1398 $\left(\mathrm{M}^{+}\right)$.

Compound 74B: an oil (33\%), $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1470$ and 1460; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.53\left(3 \mathrm{H}, \mathrm{t}, J 7.3,4-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.07-1.19$ $(2 \mathrm{H}, \mathrm{m}), 1.49-1.53(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 1.95(1 \mathrm{H}$, br d, $J 11.6,8-\mathrm{H})$, $2.20-2.28(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 3.37(1 \mathrm{H}$, br d, $J 5.5,5-\mathrm{H}), 3.59(1 \mathrm{H}, \mathrm{br}$ $\mathrm{t}, J 10.9,3-\mathrm{H}), 3.66(1 \mathrm{H}, \mathrm{t}, J 10.9,3-\mathrm{H}), 3.71(1 \mathrm{H}, \mathrm{br}$ d, $J 12.8$, $\mathrm{NC} H \mathrm{HPh}), 4.23(1 \mathrm{H}$, br d, $J 12.8, \mathrm{NCH} H \mathrm{Ph}), 5.60(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ 3.1, 1-H) and $7.25-7.41(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z(\mathrm{EI}) 233.1432\left(\mathrm{M}^{+}\right.$. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires 233.1416).

6-Benzyl-4-phenyl-2,7-dioxa-6-azabicyclo[3.2.1] octanes 75A, B Compound 75A: an oil (11%), $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1500$ and 1460; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.84-1.91(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.24(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $J 12.2,8-\mathrm{H}), 3.03-3.09(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.56-3.64(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 3.86(1 \mathrm{H}$, br d, $J 11.6,3-\mathrm{H}), 4.02(1 \mathrm{H}, \mathrm{d}, J 13.4$, $\mathrm{NCHHPh}), 4.20(1 \mathrm{H}, \mathrm{d}, J 13.4, \mathrm{NCH} H \mathrm{Ph}), 4.47(1 \mathrm{H}, \mathrm{dd}, J$ 11.6 and $4.9,3-\mathrm{H}), 5.66(1 \mathrm{H}$, br d, $J 3.1,1-\mathrm{H})$ and $7.28-7.46$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m/z (EI) $281.1409\left(\mathrm{M}^{+} . \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2}\right.$ requires 281.1416).

Compound 75B: an oil (50\%), $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 1500$ and 1455; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.16(1 \mathrm{H}, \mathrm{brd}, J 11.6,8-\mathrm{H}), 2.31(1 \mathrm{H}, \mathrm{br}$ ddd, $J 11.6,5.9$ and $3.5,8-\mathrm{H}), 2.96(1 \mathrm{H}, \mathrm{br}$ dd, $J 11.6$ and 6.1 , $4-\mathrm{H}), 3.68(1 \mathrm{H}, \mathrm{br}$ d, $J 5.9,5-\mathrm{H}), 3.83(1 \mathrm{H}, \mathrm{br}$ d, $J 12.8$, $\mathrm{NCHHPh}), 3.86(1 \mathrm{H}$, br dd, $J 11.0$ and $6.1,3-\mathrm{H}), 4.13(1 \mathrm{H}, \mathrm{d}$, $J 12.8, \mathrm{NCH} H \mathrm{Ph}), 4.20(1 \mathrm{H}$, br dd, $J 11.6$ and $11.0,3-\mathrm{H}), 5.68$ $(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 3.5,1-\mathrm{H})$ and $7.18-7.40(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI})$ 281.1402.

6-Benzyl-3,3,4-trimethyl-2,7-dioxa-6-azabicyclo[3.2.1]octane 76B

A pale yellowish oil (74%), $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1180 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.84(3 \mathrm{H}, \mathrm{d}, J 7.1,4-\mathrm{Me}), 1.15(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.39(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 1.75(1 \mathrm{H}, \mathrm{dq}, J 7.1$ and $1.9,4-\mathrm{H}), 1.89(1 \mathrm{H}, \mathrm{d}, J 11.3,8-\mathrm{H})$, $2.15-2.22(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 3.15(1 \mathrm{H}, \mathrm{dd}, J 5.8$ and $1.9,5-\mathrm{H}), 3.68$ $(1 \mathrm{H}, \mathrm{d}, J 12.9, \mathrm{NC} H \mathrm{HPh}), 4.12(1 \mathrm{H}, \mathrm{d}, J 12.9, \mathrm{NCH} H \mathrm{Ph})$, $5.59(1 \mathrm{H}, \mathrm{d}, J 3.6,1-\mathrm{H})$ and $7.21-7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z(\mathrm{EI})$ $247.1557\left(\mathrm{M}^{+} . \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2}\right.$ requires 247.1571).

Acknowledgements

We thank Mr K. Kawamura, Ms K. Mushiake, Ms M. Suzuki, Ms A. Satoh and Ms Y. Maehashi of this Institute for microanalyses, spectral measurements and the preparation of the paper.

References

1 (a) J. T. Welch and S. Eswarakrishnan, Fluorine in Bioorganic Chemistry, Wiley, New York, 1991; (b) R. Feller and Y. Kobayashi, in Biomedical Aspects of Fluorine Chemistry, Kodansha and Elsevier Ltd., Tokyo, 1982; (c) J. T. Welch, Tetrahedron, 1987, 43, 3123.
2 M. Ihara, M. Takahashi, K. Fukumoto and T. Kametani, J. Chem. Soc., Chem. Commun., 1988, 9; J. Chem. Soc., Perkin Trans. 1, 1989, 2215.

3 M. Ihara, T. Kawabuchi, Y. Tokunaga and K. Fukumoto, Heterocycles, 1995, 40, 97.
4 (a) M. Ihara, N. Taniguchi, T. Kai, K. Satoh and K. Fukumoto, J. Chem. Soc., Perkin Trans. 1, 1992, 221; (b) M. Ihara, T. Kawabuchi, Y. Tokunaga and K. Fukumoto, Tetrahedron: Asymmetry, 1994, 5, 1041.
5 J. A. Dale, D. L. Dull and H. S. Mosher, J. Org. Chem., 1969, 34, 2543.

6 B. Neises and W. Steglich, Angew. Chem., Int. Ed. Engl., 1978, 17, 522.

7 M. Ihara, M. Suzuki, A. Hirabayashi, Y. Tokunaga and K. Fukumoto, Tetrahedron: Asymmetry, 1995, 6, 2053.

8 M. Hudlicky, Org. React., 1988, 35, 513.
9 M. Simizu and H. Yoshioka, Tetrahedron Lett., 1988, 29, 4101.
10 D. B. Dess and J. C. Martin, J. Am. Chem. Soc., 1991, 113, 7277.
11 The results are consistent with the frontier orbital theory: I. Fleming, Frontier Orbitals and Organic Reactions, Wiley, Chichester, 1976, p. 148.
12 R. H. Baker, K. H. Cornell and M. J. Cron, J. Am. Chem. Soc., 1948, 70, 1490.
13 N. Cohen, W. F. Eichel, R. J. Lopresti, C. Neukom and G. Saucy, J. Org. Chem., 1976, 41, 3505.

14 P. Grisenti, P. Ferraboschi, A. Manzocchi and E. Santaniello, Tetrahedron, 1992, 48, 3827.
15 M. Ihara, F. Setsu, M. Shohda (née Hosoda), N. Taniguchi, Y. Tokunaga and K. Fukumoto, J. Org. Chem., 1994, 59, 5317.

Paper 7/02810E
Received 24th April 1997
Accepted 14th July 1997

